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TL; | D) 2 We propose VCSearch, enhancing LLMs’ robustness in mathematical reasoning by detecting 1ll-defined problems.

PMC Benchmark

Evaluation Metrics
Rejection Rate(R-rate):

In real-world scenarios, problem formulations are often incomplete or inconsistent,
containing missing or contradictory conditions. Such cases are generally unsolvable and
are referred to as ill-defined problems, which remain underexplored. To address this gap,
we construct a benchmark called Problems with Missing and Contradictory Conditions
(PMC) to evaluate how models respond to these challenging scenarios.

Reaction Score(R-Score)
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Problem Analysis: Trade-off Dilemma

(fThE first guess 1is 80, 1\
the second is 20 more
than half of 80 (80/2 +
20 = 60), and the third
is 25% more than 80 (80 +
0.25 * 80 = 100). Their
average guess is (80 + 60

Gunter is trying to count j\
the jelly beans in a jar.

He asks his friends how

many they think are in the
jar. One says 80. Another
says 20 more than half the
first one. A third says 25%
more than the first one.
What is their average guesij
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A-rate an ill-gafined prablems Accuracy on well-defined profblems

We find that when the model 1s exposed to
both well-defined and 1ll-defined problems,
its performance on each degrades, revealing a
trade-off dilemma between solving accuracy
and rejection capability.

+ 100) / 3 = 80. So the
\kauerage guess is 80.
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VCSearch Method

hnchored 1 breparation | 112 Exploration  j| Variable-Constraint Dynamic Scarch
1Initialization i % problem : :
: i POp  msmommmm- ! @+ mmm o+ UL Preparation
' Question: o ® _Q _Q_':':":"_ § I : N
: " : : I :‘ = -.-l"“-:-,- nowledge : — / . .
. ﬂJios};nde?ﬁEi ;2 t;lye BN | e varabiLe: expected-valve Q L[] wnowteds | C, =LLMg (p7 U}, Chr,) We extract .the head variable from the variable queue and search
| FERE : | ! : the constraint pool for related variables.
2 house for $85000, and || Filter & | :: Refine Branch Constraints ' | :
. then puts in ] il i, | expected-value == initial-cost * | EXplOratlon
. ... How much profit did he ' : Related Constraints :: (basic_multiplier + increased- : _ . :
, make? E ! expected-value = initial-cost | I value-percentage) E C — {(. ‘ N ( ) _—— C} We refine the Va.rlables to be updated using the
: 1 *(100 + increased-value- 111+ 22siCmultiplier == | YR = 1€ | Yh C : knowledge provided by the LLM, while
; 11 percentage) — ' newly added variable: 1 —— s ' It ] hi fi v introd d
' | e i ® | simultaneously searching for any newly introduce
' LLM & ' b tipl | _ ; . . ;
E @ “"’ :':::::::::::::::::::::::"::?'S_l'c_:_r;n_tl:l_fl:lf'r::::::::::::::,' Vh o {“L’ U € vars (Ch*) and v g V} varlables in the updated constraints.
: h 3 Verification : : :
 Variable Queue i S : Verification
| AEsmEmeas Rl L '®® SMT-Solver LLM Judger : e S B
: b Al d 1) - = d§ Y 9 | S* =LLM;y (p, (S,R), (S, R)) We employ LLM judger to compare candidate states,
| expected-value il s ‘ : ) I _ _ selecting the optimal one as the starting point for the next
: Fepalr-cost OOO L ~_ problem description B _ l\ E &= (V = Vh_,-,- (C \ Ch) U Ch) search iteration.
' other variables | o + . | =
- 11 @00 3 | Anchored Initialization
| Constraint Pool 1 O D @p o 5 Q :
: : : o - * - |
| O . - . - T (i} "*‘) —1IM ( ) To address cold start of search, we propose an
| repair-cost==15000 E2 |} '@ O @ o "[j': _ Better! | ) o AV Anchored Initialization that leverages the reasoning
! v oo o _C__.=’ Update Variable Queue .. : PR . biliti £ th lirmi
| other = — i i X3 2 Copstiint Poo) o’ | (V,C) if ®(S) £ 2, capabilities ot the LLM to g.en.e.rat.e a preliminary
| constraints x J L =10 o anchor state as an anchored 1nitialization state for
____________________ S (V?g) lf(:[)(S) = L. V . bl C . D . S h
A Figure 3: The overall illustration of VCSerach ariable-Constramt Dynamic Search.

Experiments
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A Table 1: The rejection rates of various comparative methods on PMC

defined problems

A Table 2: Comparison of the performance of Satlm and VCSEARCH on well-

comparison methods in a realistic environment with both
ill-defined and well-defined problems
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